Jump to content

wine in coffee cups

  • Content Count

  • Joined

  • Last visited

  • Days Won


wine in coffee cups last won the day on July 23 2012

wine in coffee cups had the most liked content!

About wine in coffee cups

  • Rank

Profile Information

  • Gender
    Not Telling
  • Location
  • Application Season
    Already Attending
  • Program

Recent Profile Visitors

6,981 profile views
  1. UW's curriculum is not Bayesian but it doesn't lack for faculty and students doing research using Bayesian methods, particularly in the statistics department. And combining both of OP's research interests, Wakefield has supervised a bunch of students from both departments in Bayesian epidemiology.
  2. ^ Good find, 845 applicants sounds much more plausible. As another sanity check number, Harvard econ PhD says over 700 applications each year, and Yale should have a similar volume. I bet either Yale accidentally added a zero in the letter they sent to applicants or they meant 10,400 applications to the entire graduate school of arts and sciences (not a useful number). Bringing this back to statistics, by altering the URL for Yale's econ PhD data, there's info about Yale's statistics PhD program, which I hadn't seen before: http://gsas.yale.edu/sites/default/files/department-files/statisti
  3. Geographic preferences are a fair starting point, though you've omitted a number of programs that logically should be there based on the regions you included (e.g. UNC, Chicago). I would prioritize them based on your research interests, which you didn't mention, but you must have some stuff in mind if you're coming from engineering and making a switch now. There's not like a central site that lays it all out for you unfortunately, you have to figure this out by talking to statistics faculty and looking at department webpages and lists of publications. As Bayesic said, some of the programs you
  4. Congratulations on your success with the biostats and OR applications. Where did you end up? somehow I don't think a lot of applicants will be comforted seeing someone with a 3.96 GPA from an Ivy League etc. getting rejections from statistics programs! Nitpick: you're off by an order of magnitude on the Yale econ PhD application totals. Peterson's says 776 using what is probably old data, so around 1000 last year is plausible, but not 10,000.
  5. Sounds like you're at NC State. You should talk to the faculty there who have helped undergraduates apply for top PhD programs to see what they think. I'd generally emulate whatever has been successful for previous students, which might include research with faculty over the summer. I wanted to plug the Budapest Semesters in Mathematics program as an alternative study abroad that can be actively helpful in math/stats graduate admissions and need not conflict with your last undergrad summer. They offer a lot of math classes (most recent semester syllabi), it's as easy or hard as you make it
  6. Just do your thing, enjoy your new university, worry about what's realistic later once you have more information. For graduate school, extracurriculars don't matter, except perhaps to the extent that they have faculty advisors who get to know you better through them and will write nice things about you later. Participate in clubs/societies if you're genuinely interested, but don't expect them to be a way to make up for poor grades.
  7. I think you will be competitive for those and other biostatistics master's programs, but who can say anything for sure. For context, Berkeley biostat MA reports a 25% admit rate with a mean GPA of 3.62. Based on what you've written here, your main weaknesses appear to be downward grade trend (A-'s and B's) in more advanced math classes and a lack of a mathematical statistics course (take this and aim for an A). ginagirl's advice is good. I'm surprised a 3.78 GPA places you in the top 2% of your class. For undergrads at my (also top 20) public university, 3.75 is top 10%, 3.86 is top 3.5%.
  8. These are strange criteria for picking a grad program. The overall enrollment won't have much bearing on the graduate experience (though department and program size are things to care about). You're going to be spending all your on-campus time either in classes, in your office/lab, around department common areas, or in a library or coffee shop, so I'd re-think how much the campus vs. integrated urban setting criterion matters to you if you'll be in the same one or two buildings all day. It's nothing like the undergraduate experience. The first two subfields are a focus of applied math de
  9. Nothing should stop you from applying to places like CMU or Duke unless you wouldn't actually be interested in going there if admitted. (CMU might not be a great choice if you're interested in biostatistics though.) You could spend a bunch of time mucking around department website hell (and eventually you will when you apply), but I think talking to faculty at the SIBS you're doing this summer is the best way for you to learn about research areas and program/faculty strengths. That's pretty much what SIBS is for.
  10. Keep the grades up, try to get to know a few faculty in the next year and a half (work on research or a thesis with them, do reading credits under someone, go to office hours, ask for advice about your plans), you'll be fine. I think you have a good chance at more selective departments than the ones you've listed, so I'd apply based more on your research interests and location preferences when the time comes. Realistically, many of those are going to be safeties for you if you remain around the top 5% of your class at a good undergrad, so maybe prune some of them out and add some more reaches.
  11. janh: what citizenship do you have, where did you earn your bachelor's degree, and in which country are you working? What were your grades like? From your writing and the "advance mathematics" course description, I am guessing you didn't do undergrad in the USA. This would make way more of a difference for your admissions chances than how you did on the GRE general. Your coming from a foreign university would mean evaluating your academic preparation is going to be challenging for the faculty on admissions committees at American universities, unless you were a math or statistics major at a top
  12. No, I think it's the opposite actually: they expect it's reasonably likely you won't return if you take a leave of absence. And I think they'd rather have the chance to address some of your grievances (if you have anything specific) and keep you rather than have you drop out without warning. Are you ruling out the possibility of making your current program workable? I'm curious why.
  13. Oh, I assumed you had something more concrete planned for time in-between. If what you're looking for is a way to cultivate research interests, why not join a working group or start an RAship with faculty in your department? Like, normal grad student exploring topics stuff. Nothing like jumping right into an area to to help you figure out whether it's interesting to you or not, and you're not committing yourself to an advisor or dissertation topic. If you truly feel that you need to work away from your university, I would see if you can arrange an extended internship (e.g. a 6 month term) ra
  14. The catch is that your recommenders say will matter 10x more, doesn't matter how much you downplay your previous program. Those letters are the most important part of your application! Members of the admissions committee will be extra keen to hear what the faculty at your current program think about how you stack up relative to other students and whether you are a good candidate for a PhD. You have little control over whether and how your letter writers frame your leaving their program beyond whatever reasons you share with them. It will not look good if what they write is in any way at odds w
  15. Yeah, TakeruK is totally right that this will depend on the PhD program. For an extreme example, the UW biostatistics and statistics PhD programs handle previous master's degrees completely differently -- even though these programs have the same required PhD courses! Someone coming into UW statistics with a background that included a Casella & Berger-equivalent course (even if they don't have a master's!) and previous courses in experimental design and applied regression would be able to start the PhD theory and methods sequences right away. There's some details about minimum GPAs you ha
  • Create New...

Important Information

By using this site, you agree to our Terms of Use and Privacy Policy.